An Unsupervised Prediction Model for Salmonella Detection with Hyperspectral Microscopy: A Multi-Year Validation
نویسندگان
چکیده
Hyperspectral microscope images (HMIs) have been previously explored as a tool for the early and rapid detection of common foodborne pathogenic bacteria. A robust unsupervised classification approach to differentiate bacterial species with potential single cell sensitivity is needed real-world application, in order confirm identity bacteria isolated from food product. Here, one-class soft independent modelling class analogy (SIMCA) was used determine if individual cells are Salmonella positive or negative. The model constructed validated spectral library built over five years, containing 13 serotypes 14 non-Salmonella pathogens. An image processing method designed take less than one minute paired prediction algorithm resulted an overall accuracy 95.4%, 0.97, specificity 0.92. SIMCA’s only achieved after incorporating multiple established. These results demonstrate HMI sensitive presumptive screening method, moving towards (<8 h) (<1 identification matrices.
منابع مشابه
BotOnus: an online unsupervised method for Botnet detection
Botnets are recognized as one of the most dangerous threats to the Internet infrastructure. They are used for malicious activities such as launching distributed denial of service attacks, sending spam, and leaking personal information. Existing botnet detection methods produce a number of good ideas, but they are far from complete yet, since most of them cannot detect botnets in an early stage ...
متن کاملStyle Breach Detection: An Unsupervised Detection Model
This paper deals with the sub-task of PAN 2017 Author Identification, which is to detect style breaches for unknown number of authors within a single document in English. The presented model is an unsupervised approach that will detect style breaches and mark text boundaries on the basis of different stylistic features. This model will use some classical stylistic features like POS analysis and...
متن کاملA Semiparametric Model for Hyperspectral Anomaly Detection
Using hyperspectral (HS) technology, this paper introduces an autonomous scene anomaly detection approach based on the asymptotic behavior of a semiparametric model under a multisample testing and minimum-order statistic scheme. Scene anomaly detection has a wide range of use in remote sensing applications, requiring no specific material signatures. Uniqueness of the approach includes the follo...
متن کاملUnsupervised transfer learning for target detection from hyperspectral images
Target detection has been of great interest in hyperspectral image analysis. Feature extraction from target samples and counterpart backgrounds consist the key to the problem. Traditional target detection methods depend on comparatively fixed feature for all the pixels under observation. For example, RX employs the same distance measurement for all the pixels. However, the best separation resul...
متن کاملan application of equilibrium model for crude oil tanker ships insurance futures in iran
با توجه به تحریم های بین المملی علیه صنعت بیمه ایران امکان استفاده از بازارهای بین المملی بیمه ای برای نفتکش های ایرانی وجود ندارد. از طرفی از آنجایی که یکی از نوآوری های اخیر استفاده از بازارهای مالی به منظور ریسک های فاجعه آمیز می باشد. از اینرو در این پایان نامه سعی شده است با استفاده از این نوآوری ها با طراحی اوراق اختیارات راهی نو جهت بیمه گردن نفت کش های ایرانی ارائه نمود. از آنجایی که بر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2021
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app11030895